Bot Detector
IJPC Seal
Download FREE Sample Issue or Article
LEARN MORE
Subscribe Today
A subscription to IJPC provides on-line access to full-text, full-color, printable PDF copies of your subscribed issues, individual articles, and purchased archives.

Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4

Author(s):  Polonini Hudson, Loures da Silva Sharlene, Neves Cunha Carolina, de Oliveira Ferreira Anderson, Anagnostou Korina, Dijkers Eli

Issue:  May/Jun 2020 - Volume 24, Number 3
View All Articles in Issue

Page(s):  252-262

Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 1
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 2
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 3
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 4
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 5
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 6
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 7
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 8
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 9
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 10
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4 Page 11

Download in electronic PDF format for $75

Abstract:  To allow for tailored dosing and overcome swallowing difficulties, compounded liquid medication is often required in pediatric patients. The objective of this study was to evaluate the stability of oral suspensions compounded with SyrSpend SF PH4 and the commonly used active pharmaceutical ingredients azathioprine (powder) 50 mg/mL, azathioprine (from tablets) 50 mg/mL, clonidine hydrochloride (powder) 0.1 mg/mL, clopidogrel bisulfate (from tablets) 5 mg/mL, ethambutol hydrochloride (powder) 50 mg/mL, ethambutol hydrochloride (from tablets) 50 mg/mL, ethambutol hydrochloride (powder) 100 mg/mL, griseofulvin (powder) 25 mg/mL, hydralazine hydrochloride (powder) 4 mg/mL, nitrofurantoin (powder) 10 mg/mL, and thioguanine (powder) 2.5 mg/mL. Suspensions were compounded at the concentrations listed above and stored at controlled room and refrigerated temperatures. Stability was assessed by measuring the percentage recovery at 0 day (baseline), and at 7 days, 14 days, 30 days, 60 days, and 90 days. Active pharmaceutical ingredients quantification was performed by high-performance liquid chromatography, via a stability-indicating method. The following oral suspensions compounded using SyrSpend SF PH4 as the vehicle showed a beyond-use date of 90 days when stored both at room or refrigerated temperatures: clonidine hydrochloride 0.1 mg/mL, ethambutol hydrochloride 50 mg/mL and 100 mg/mL, griseofulvin 25 mg/mL, nitrofurantoin 10 mg/mL, and thioguanine 2.5 mg/mL, all compounded from the active pharmaceutical ingredients in powder form. Suspensions compounded using the active pharmaceutical ingredients from tablets presented a lower beyond-use date: 30 days for ethambutol hydrochloride 50 mg/mL and hydralazine hydrochloride 4 mg/mL, stored at both temperatures, and for clopidogrel bisulfate 5 mg/mL when stored only at refrigerated temperature. Azathioprine suspensions showed a beyond-use date of 14 days when compounded using active pharmaceutical ingredients in powder form at both temperatures. This suggests that SyrSpend SF PH4 is suitable for compounding active pharmaceutical ingredients from different pharmacological classes.

Related Keywords: azathioprine, clonidine hydrochloride, clopidogrel bisulfate, ethambutol hydrochloride, griseofulvin, hydralazine hydrochloride, nitrofurantoin, thioguanine, oral suspensions, active pharmaceutical ingredients, stability

Related Categories: EXCIPIENTS, PEER-REVIEWED, STABILITIES, COMPATIBILITIES

Printer-Friendly Version



Related Articles from IJPC
Title/Author
(Click for Abstract / Details / Purchase)
Issue/​Page
View/Buy
Stability of Azathioprine, Clonidine Hydrochloride, Clopidogrel Bisulfate, Ethambutol Hydrochloride, Griseofulvin, Hydralazine Hydrochloride, Nitrofurantoin, and Thioguanine Oral Suspensions Compounded with SyrSpend SF pH4
Polonini Hudson
, Loures da Silva Sharlene, Neves Cunha Carolina, de Oliveira Ferreira Anderson, Anagnostou Korina, Dijkers Eli
May/Jun 2020
Pg. 252-262

Physical and Chemical Stability of Low and High Concentrations of Morphine Sulfate with Clonidine Hydrochloride Packaged in Plastic Syringes
Xu Quanyun A
, Trissel Lawrence A, Pham Lien
Jan/Feb 2002
Pg. 66-69

Compatibility of Baclofen, Carvedilol, Hydrochlorothiazide, Mercaptopurine, Methadone Hydrochloride, Oseltamivir Phosphate, Phenobarbital, Propranolol Hydrochloride, Pyrazinamide, Sotalol Hydrochloride, Spironolactone, Tacrolimus Monohydrate, Ursodeoxycholic Acid, and Vancomycin Hydrochloride Oral Suspensions Compounded with SyrSpend SF pH4
Polonini Hudson
, da Silva Sharlene Loures, Brandão Marcos Antônio Fernandes, Bauters Tiene, De Moerloose Barbara, Ferreira Anderson de Oliveira
Nov/Dec 2018
Pg. 516-526

Ketamine Hydrochloride 5%, Gabapentin 10%, Clonidine Hydrochloride 0.2%, and Baclofen 2% in Lipoderm
Allen Loyd V Jr
May/Jun 2016
Pg. 231

Ketamine Hydrochloride 5%, Gabapentin 10%, Clonidine Hydrochloride 0.2%, and Baclofen 2% in Lipoderm
Allen Loyd V Jr
Mar/Apr 2024
Pg. 135

Diltiazem Hydrochloride 12 mg/mL in SyrSpend SF pH4 Oral Suspension
Allen Loyd V Jr
Nov/Dec 2018
Pg. 493

Stability of Alprazolam, Atropine Sulfate, Glutamine, Levofloxacin, Metoprolol Tartrate, Nitrofurantoin, Ondansetron Hydrochloride, Oxandrolone, Pregabaline, and Riboflavin in SyrSpend SF pH4 Oral Suspensions
de Oliveira Ferreira Anderson
, Polonini Hudson C, Loures da Silva Sharlene, Cerqueira de Melo Victor Augusto, de Andrade Laura, Fernandes Brandão Marcos Antônio
May/Jun 2017
Pg. 255-263

Ondansetron Hydrochloride 0.8 mg/mL in SyrSpend SF pH4 Oral Suspension
Allen Loyd V Jr
Jan/Feb 2020
Pg. 60

Stability of Allopurinol, Amitriptyline Hydrochloride, Carbamazepine, Domperidone, Isoniazid, Ketoconazole, Lisinopril, Naproxen, Paracetamol (Acetaminophen), and Sertraline Hydrochloride in SyrSpend SF PH4 Oral Suspensions
Polonini Hudson C
, Loures Sharlene, de Araujo Edson Peter, Brandão Marcos Antônio F, Ferreira Anderson O
Sep/Oct 2016
Pg. 426-434

Formulation and Accelerated Stability Studies for an Extemporaneous Suspension of Amiodarone Hydrochloride
Alexander Kenneth S
, Thyangarajapuram N
Sep/Oct 2003
Pg. 389-393

Nitrofurantoin 2 mg/mL in SyrSpend SF pH4 Oral Suspension
Allen Loyd V Jr
Mar/Apr 2020
Pg. 134

Clonidine 0.01-mg/mL in Oral Mix and Oral Mix SF Suspension
Allen Loyd V Jr
Jan/Feb 2021
Pg. 44

Physiochemical and Microbiological Stability of Azathioprine Suspensions in PCCA Base, SuspendIt
Pramar Yahoda V
, Mandal Tarun K, Bostanian Levon A, Kader Cyndy, Morris Tommy C, Graves Richard A
Jul/Aug 2023
Pg. 330-339

Lidocaine Hydrochloride-2%, Ketolorac Tromethamine-3%, and Clonidine Hydrochloride-0.1% Injection
Allen Loyd V Jr
Jan/Feb 2005
Pg. 66

Clonidine Hydrochloride 10 mg/mL in Inorpha Solution
Allen Loyd V Jr
Mar/Apr 2018
Pg. 146

Clonidine Hydrochloride 0.1-mg/mL Oral Liquid
Allen Loyd V Jr
Jan/Feb 2007
Pg. 71

Imipramine Hydrochloride 5-mg/mL in SyrSpend SF pH4
Allen Loyd V Jr
Sep/Oct 2021
Pg. 418

Pyridoxine Hydrochloride 25 mg/mL in Oral Mix and Oral Mix SF Suspension
Allen Loyd V Jr
Nov/Dec 2021
Pg. 505

Pyridoxine Hydrochloride 50 mg/mL in SyrSpend SF pH4
Allen Loyd V Jr
Mar/Apr 2022
Pg. 149

Physicochemical and Microbiological Stability of Compounded Clonidine Hydrochloride Oral Liquid Dosage Forms in PCCA Base, SuspendIt®
Pramar Yashoda V
, Mandal Tarun K, Bostanian Levon A, Johnson Jyra, Graves Richard A
Jul/Aug 2024
Pg. 334-343

Return to Top